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In [1] it was shown that the Bernstein polynomials of certain piecewise
linear functions are deficient, in a sense soon to be made precise. The proof
given there was highly computational and failed to illuminate the cause of
the deficiency. In this note we give a much simplified proof, which also
yields a fuller understanding of the phenomenon. We then apply the
method used to obtain a partial converse of the theorem in [1 ].

The result referred to is as follows. Denote by Pn the set of algebraic
polynomials of degree ~ n. For JE C[O, 1], the Bernstein polynomial of

degree n ofJis defined by BAJ; x) = Bn(x) = L~=oJC)(~) x k(1- xt- k.

THEOREM A [1]. Let J be a piecewise linear Junction having (possible)
changes oj slope only at the points ijm, i = 1, 2, ... , m - 1. Then, Jor all n ~ 1,
Bmn + 1E Pmn and Bmn + I(X) == Bmn(x).

Proof We rely upon the following formula of Averbach (see [3,
p.306]):

Bn(x) - Bn+ I(X)
(1 - x)n+ 1 kt {C)J(~)+(k:l)Je:l)

-C: 1) JC: 1)}z\ (1 )

where z = xj(l - x). The term in brackets is equal to
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_ n! {~f(~)+ 1 f(k-l)
-(k-l)!(n-k)! k n n+l-k n

n + 1 (k)}
-k(n+l-k)f n+l .
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(2)

On the other hand, the second-order divided difference of f based on the
points (k - 1)/n, kl(n + 1), and kin satisfies

f[~,_k ,~J=n2(n+ 1) {~f(~)+ 1 f(~)
n n+ln k n n+l-k n

_ n+l f(_k)}
k(n+l-k) n+l . (3)

Comparing (2) and (3) we see that the coefficient of Zk in (1) is a positive
multiple of f[(k - 1)In, kl(n + 1), kin]. Hence,

Bn(x)-Bn+1(x) _ ~ b f[k-l _k_ ~J k (4)
(1_ )n + 1 - 1.. n, k , + 1' z .

X k~ 1 n n n

Replacing n by mn we obtain

Bmn(x) - Bmn +I(X)
(1_x)mn+l

mn [k-l k k ]L bmn,d --'-+1'- Zk.
k=1 mn mn mn

(5)

Since f is linear in each of the intervals [(k -1 )/mn, klmn], each of the
divided differences in (5) is zero, so that Bmn +I(X) == Bmn(x), and the proof
is complete.

In [4] it was conjectured that the converse of Theorem A is true; namely
that the functions in that theorem are the only ones which satisfy
Bmn +I(X) == Bmn(x), n = 1, 2, 3, .... We now make use of (5) to obtain
partial confirmation of this conjecture.

THEOREM 1. Let f E CEO, 1] and suppose that f E C 2((i - 1)/m, ilm),
i = 1, 2, ..., m. If Bmn + I(X) == Bmn(x), n = 1, 2, 3, ..., then f is piecewise linear
on [0, 1], with (possible) changes of slope only at the points ilm,
i=1,2, ...,m-1.

Proof If Bmn +I(X) == Bmn(x), then, by (5) we have

[
k-l k k ]

f --'--1'- =0, k= 1, 2, ..., mn; n= 1, 2, 3, ...
mn mn+ mn

(since bmn,k > 0).
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Now f E C 2 on each of the intervals ((i - 1)1m, i/m), i = 1, 2, ..., m. Hence,
for any triple ((k - 1)/mn, k/(mn + 1), k/mn) lying in ((i - 1)/m, i/m), we
have f[ (k - 1)/mn, k/(mn + 1), k/mn] = 1"(0)/2 for some 0 E ((k - 1)/mn,
k/mn) (see [2, p. 249]). The triples of the form ((k-l)/mn, k/(mn+ 1),
k/mn) are dense in ((i - 1)/m, i/m). Thus, I" has a dense set of zeros on
((i - 1)/m, i/m). The continuity of I" now yields I" :=°on each such inter
val. As a result, f is linear on ((i-I )/m, i/m), i = 1, 2, ..., m.

Another condition which can be used in place of f E C 2 is convexity.

THEOREM 2. If f E C[O, 1] is convex (or concave) on ((i-I )/m, i/m),
i = 1, 2, ..., m, and satisfies Bmn + I (x) == Bmn(x), n = 1, 2, 3, ..., then f is as in
the conclusion of Theorem 1.

Proof Consider the triple ((i - 1)/m, i/(m + 1), i/m). Since f[ (i - 1)/m,
i/(m + 1), i/m] = 0, f is linear on these three points. But this, together with
the convexity of f (or its concavity), guarantees that f is linear on
((i-l)/m, i/m), i= 1,2, ..., m.

We now show that the only piecewise linear functions which satisfy
B mn +I(X):= Bmn(x), n = 1, 2, 3, ..., are those of Theorem A.

THEOREM 3. Iff is piecewise linear on [0,1] and Bmn+I(X):=Bmn(x),
n = 1, 2, 3, ..., then the knots off can occur only at i/m, i = 1, 2, ..., m - 1.

Proof Suppose f has a knot at Xo E ((i-I )/m, i/m). Then, for some
e > 0,/ is linear in (xo - e, x o) with slope sI' and linear in (xo, Xo + e) with
a different slope, S2. Now there exists some triple ((j - 1)/km, j/(km + 1),
j/km), with (j - 1)lkm E (xo - e, x o) and j/km E (xo, Xo+ e). We know that
f[(j-l)/km,j/(km+ 1),j/km] must equal 0. But, if Sl ::/:S2' then this
divided difference is not 0. Hence, there can be no knots in ((i-I )/m, i/m),
i= 1, 2, ..., m.

Remarks. 1. It is possible to weaken the hypothesis of Theorem 2 and
merely require that f be piecewise convex on ((i - 1)1m, i/m), i = 1, 2, ..., m.
Indeed, suppose f is convex (or concave) on (a, b) c ((i-I )/m, i/m). By a
modification of the proof of Theorem 2, we can show that f must be linear
on (a, b). Hence, iff is piecewise convex on [(i - 1)/m, i/m], i = 1, 2, ..., m,
then f is actually piecewise linear on each of these intervals, and the result
follows from Theorem 3.

2. Theorems 1-3 and extensive numerical calculations done with
J. A. Roulier strengthen our belief that the full converse of Theorem A
holds.
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